CITY OF DORRIS CIRCULATION ELEMENT

November 18, 2024

CITY OF DORRIS 307 S. MAIN STREET DORRIS, CA 96023

I.0 Circulation Element	4-1
4.1 Introduction	4-1
4.2 Statutory Requirements	4-1
4.3 Background	4-1
4.3.1 Highway and Street Classifications	4-1
4.3.1.1 Arterials	4-1
4.3.1.2 Collectors	4-2
4.3.1.3 Local Roads	4-2
4.3.2 Existing Street and Highway System	4-2
4.3.2.1 Arterials	4-2
4.3.2.2 Collectors	4-3
4.3.2.3 Local Roads	4-3
4.3.2.4 Scenic Highways	4-4
4.3.2.5 Pedestrian and Bicycle Facilities	4-4
4.3.2.6 Parking	4-5
4.3.2.7 Traffic Management	4-6
4.3.3 Shipping and Transit	4-6
4.3.3.1 Railroad	4-6
4.3.3.2 Trucking	4-7
4.3.3.3 Public Transit	4-7
4.3.3.4 Aviation	4-7
4.3.4 Public Utilities	4-8
4.3.4.1 Water	4-8
4.3.4.2 Wastewater	4-8
4.3.4.3 Storm Drainage	4-8
4.3.4.4 Solid Waste	4-9
4.3.4.5 Electrical Transmission	4-9
4.3.4.6 Data & Communications	4-9
4.4 Level of Service and Vehicle Miles Traveled	4-10
4.5 Correlation with Land Use Element	4-11
4.6 Correlation with Open Space & Conservation Element	4-11
4.7 Correlation with Safety Element	4-11
4.8 Circulation Element Goals, Policies & Programs	4-12

Figures

Figure 4-1, Circulation Map	4-17
Figure 4-2, Water & Wastewater Utilities	
Figure 4-3, Consumer Fixed Downstream Availability	4-19

4.1 INTRODUCTION

The Circulation Element focuses on the movement of people, goods, water, wastewater, storm water, energy, solid waste, and data and communications in the City of Dorris. In doing so, the Circulation Element highlights Dorris' current and planned transportation system, provides an overview of public utilities in the City, and sets forth specific goals, policies, and programs to guide the development and maintenance of circulation in Dorris through 2045.

4.2 STATUTORY REQUIREMENTS

California Government Code Section 65302(b) states that the circulation element of a general plan shall consist of "the general location and extent of existing and proposed major thoroughfares, transportation routes, terminals, any military airports and ports, and other public utilities and facilities, all correlated with the land use element of the plan." It further states that the circulation element must "plan for a balanced, multimodal transportation network that meets the needs of all users of streets, roads, and highways for safe and convenient travel in a manner that is suitable to the rural, suburban, or urban context of the general plan."

Additionally, recent legislation has increased focus on air quality, reducing greenhouse gas (GHG) emissions, and reducing vehicle miles traveled (VMT) in the Circulation Element. This includes:

- California Complete Streets Act of 2008 (Assembly Bill (AB) 1358);
- Global Warming Solutions Act of 2006 (AB 32);
- Sustainable Communities and Climate Protection Act of 2008 (Senate Bill (SB) 375);
- CEQA Streamlining for Infill Projects (SB 226, 2011); and
- Shift in CEQA transportation metric to VMT (SB 743, 2013).

4.3 BACKGROUND

4.3.1 Highway and Street Classifications

The Federal Highway Administration (FHWA) maintains a functional classification system that defines the role of roads or streets that channel movement through a highway system. Streets and highways are arranged into classes or systems according to the character of service they intend to provide. This roadway functional classification system is the same system the California Department of Transportation (Caltrans) utilizes to make recommendations to the FHWA for approval of the official functional classification maps. The City of Dorris does not maintain its own functional classification system. Should the City desire to add or modify a functional classification, it would petition Caltrans for the change.

Rural and urban areas have different roles as to density of street and highway networks, travel patterns, and how these elements are integrated into a highway system. To qualify as "urban," the area must encompass at least 2,000 housing units or at least 5,000 persons. The term "rural" encompasses all population, housing, and territory not included within an urban area. The City of Dorris is considered rural. While the "urban" or "rural" designation is independent of the functional classification, urban area boundaries play an important role in developing the functional classification of a road in an urban/rural context. These functional classifications include:

4.3.1.1 Arterials

Arterials provide the highest level of service at the greatest speed for the longest uninterrupted distance, often with multiple lanes and some degree of access control. In rural areas, the FHWA

delineates arterials into "principal arterials" and "minor arterials." Rural principal arterials are further broken down into "interstates" and "other principal arterials."

4.3.1.2 Collectors

Collectors provide a less highly developed level of service at a lower speed for shorter distances by collecting traffic from local roads and connecting them with arterials. In rural areas, the FHWA delineates collectors into "major" and "minor" collectors. Major collectors serve larger towns not accessed by higher order roads and important industrial or agricultural centers that generate significant traffic but are not served by arterials. Rural minor collectors are typically spaced at intervals consistent with population density to collect traffic from local roads and to ensure that a collector road serves all smaller populated areas.

4.3.1.3 Local Roads

Local roads provide the most direct access to adjoining properties and uses, such as residences, businesses, schools, parks, etc. Because of this, local roads are normally designed to discourage through traffic (e.g., controlled intersections and slower vehicle speeds) and to move traffic toward arterials and collectors where it can move more efficiently. Roads not designated as either an arterial or a collector are local roads.

4.3.2 Existing Street and Highway System

There are approximately 8.73 maintained road miles in the City of Dorris in 2024. The City's existing road network is shown in **Figure 4-1**, **Circulation Map** and the roadways are described according to their FHWA functional classifications below

4.3.2.1 Arterials

United States Route 97 (US 97) through Dorris is designated an "other principal arterial." There are no other arterials within the City. Primary access to Dorris is from US 97. US 97 is a north-south, two-lane conventional highway beginning at Interstate 5 (I-5) in Weed approximately 51 miles south of Dorris and ending at the United States-Canada border approximately 610 miles north of Dorris where it becomes British Colombia Highway 97. US 97 connects Dorris with Klamath Falls in Oregon, which is a primary destination for goods and services for City residents. In Dorris, US 97 winds through town, serves as part of "main street", and is heavily used by local and through traffic.

Like other routes in the California Freeway and Expressway System, US 97 is managed by the California Department of Transportation (Caltrans). Caltrans reports that in 2022, annual average daily traffic (AADT) on US 97 through Dorris consisted of approximately 5,500 vehicles, with 620 vehicles in transit during peak hour traffic (i.e., "rush hour"). The heaviest traffic volumes typically occur in July and August with 7,000 vehicles per day on average. (It is important to note that traffic volumes account for vehicles moving in each direction.) US 97 is also a major route for trucks and a popular alternative to I-5 due to fewer grades which allow trucks to consume less fuel and achieve faster travel times to many destinations in Oregon. Caltrans estimates that trucks accounted for approximately 28.7 percent of the total annual average daily traffic on US 97 through Dorris in 2022, or 1,580 trucks per day on average.

Traffic volumes on US 97 vary from year to year, however, they have generally been trending upward when assessed over the long-term. Caltrans reports that AADT grew by 1,450 vehicles between 2015 and 2022 and by 750 vehicles between 2005 and 2022. Trucks accounted for approximately 34 percent of the increase in volume between 2005 and 2022. Truck traffic also

increases periodically on US 97 when winter snowfall forces closures on I-5 and trucks are rerouted to US 97. Despite the long-term trend, the 2021 Siskiyou County Regional Transportation Plan projects traffic volumes on US 97 will fall by approximately 67 percent over the planning period, with AADT reaching a low of 1,818 vehicles by the year 2041.

A constraint for traffic on US 97 concerns three 90-degree turns through town and a downhill sweeping curve that vehicles must manage as they approach Dorris from the north. In Dorris, US 97 curves through town as parts of S. Butte Street, W. Fourth Street, S. Main Street, and E. First Street. Though the 90-degree turns can be difficult for tractor-semis to maneuver, they help to keep vehicle speeds on US 97 slow through the City. Accidents and misdirected truck traffic do, however, periodically occur and vehicles parked along US 97 have been hit. The sweeping downhill curve into the City from the north is also occasionally difficult for drivers to manage. With two southbound lanes and speed limit signs located on only one side of the highway, drivers passing slower moving tractor-semis may not see the signs prompting them to slow, and multiple drivers have failed to safely maneuver the turn.

In accordance with state law, Caltrans coordinates with Dorris and other underserved rural communities every two years to identify unmet needs relative to the State's Freeway and Expressway System. The information gathered by Caltrans during this process is used to update the transportation needs assessment in the *State Highway System Management Plan*, and to estimate the cost to operate, maintain, and provide for the State's transportation system in Dorris and other underserved rural communities for the next 10 years. The "unmet needs" process provides an opportunity for the City to communicate any issues or concerns it has relative to the highway and to work with the State to ensure improvements are made to US 97 to address those concerns, if necessary.

For many years Caltrans had been planning to realign US 97 to bypass Dorris to the east. Such a change could have significant positive and negative repercussions on the City. However, as of this latest revision to the Circulation Element (2024), Caltrans is no longer pursuing development of the bypass. Therefore, the General Plan does not consider the potential realignment of US 97 to be a likely occurrence during the life of the Plan. Should the proposal be revived, the City will need to consider how such a realignment may affect the City's land use and circulation plans.

4.3.2.2 Collectors

The designated collector streets in Dorris are S. Butte Street and W. First Street, which becomes Picard Road outside city limits. These roadways are designated as rural "minor collectors." There are no other collectors within or adjacent to the City. As the only collectors, W. First Street and S. Butte Street provide direct access to US 97 and are important roadways in the City. Both experience regular local traffic and W. First Street experiences through traffic from outlying areas as well. The most recent traffic count for W. First Street, as measured 150 feet outside city limits where it is Picard Road, occurred in January 1991. At that time, annual average daily traffic was 399 vehicles.

4.3.2.3 Local Roads

Aside from US 97, S. Butte Street, and W. First Street, the roads in Dorris are local roads. Roads typically follow a grid-based system with the street network designed to efficiently move traffic to US 97. Because of the series of turns US 97 makes through Dorris, several local roads intersect with and provide direct access to the highway.

Being a small community located in a rural environment, two-lane local roads adequately carry current traffic volumes throughout the City. And with limited population growth anticipated over the life of the Plan, new development and related traffic volumes are not expected to increase significantly. As a result, it is expected that the existing local road network will be adequate to handle existing and projected traffic volumes related to the growth of the community for the current planning period.

While no new roads or significant road projects are anticipated as being needed to accommodate population growth over the next 20 years, ongoing street improvements and road maintenance will continue to be necessary to keep roads in a safe traveling mode throughout the planning period. To do so, the City works with the Siskiyou County Local Transportation Commission (SCLTC) to survey the roads and prioritize needed road maintenance and repair every five years as part of the Regional Transportation Plan update. Though this system works well for identifying and prioritizing maintenance and repairs, there remains considerable need for additional funding for projects to be completed.

4.3.2.4 Scenic Highways

The State Scenic Highway Program was created by the California Legislature in 1963 for the purpose of protecting and enhancing the natural scenic beauty of California highways and adjacent corridors through special conservation treatment. Designation as a scenic highway depends upon how much of the natural landscape can be seen by travelers, the scenic quality of the landscape, and the extent to which development intrudes upon the traveler's enjoyment of the view. The State Scenic Highway System includes a list of highways that are either eligible for designation as scenic highways or have been officially designated.

There are no roads in the planning area that have been designated as a state scenic highway. US 97 is, however, eligible for scenic highway designation under the State Scenic Highway Program. To designate US 97 or a portion of US 97, the City Council would apply to Caltrans for scenic highway approval and adopt a corridor protection program that describes local measures for protecting the corridor's visual quality via development and land use regulations; detailed land and site planning; control of outdoor advertising; careful attention to and control of earthmoving and landscaping; and the design and appearance of structures and equipment.

In addition to the State Scenic Highway Program, the National Scenic Byways Program was established by Congress in 1991 to help recognize, preserve, and enhance selected roads throughout the United States. Roads designated as Scenic Byways and All-American Roads by the U.S. Secretary of Transportation are chosen for their archeological, cultural, historic, natural, recreational, and scenic qualities.

The Volcanic Legacy Scenic Byway All-American Road is one of only 42 Scenic Byways in the United States, and it passes through Dorris as US 97. The full route of the Volcanic Legacy Scenic Byway All-American Road extends from Crater Lake in Oregon to Mount Lassen in California, a distance of roughly 500 miles.

4.3.2.5 Pedestrian and Bicycle Facilities

Bicycle and pedestrian networks should be complete systems for transportation, including coordination with land use plans, housing, and transit systems. Bicycle and pedestrian networks can be used to connect residents to employment centers, community centers, schools, commercial districts, and transit stops. Active transportation can be used to fill the gaps in transit systems when available, encourage recreational bicycling and walking for exercise, and build a

healthier, happier community. The Land Use Element prioritizes infill development, which creates opportunities for active transportation by decreasing the distance between origins and destinations.

There has traditionally been little investment in bicycle and pedestrian infrastructure in Dorris due the low volume of traffic on city streets and the cost of improvements. Bicycle parking is provided at a few locations, including City Hall, the schools, and library, however, there are presently no bicycle lanes, bicycle routes, or multi-use paths in Dorris. The pedestrian network is better but similarly incomplete with significant gaps in sidewalks and walkways throughout the community. W. Third Street and a large stretch of US 97 have been fully improved (sidewalk, paved shoulders, curb, curb ramps, gutter, etc.) and sidewalks have been developed along much of S. Butte Street and W. First Street. Otherwise, sidewalks are present in very few locations and not well connected, which diminishes their utility.

The SCLTC is in the process of developing a regional Active Transportation Plan (ATP) as part of its effort to build a transportation network that meets the unique needs of Siskiyou County's rural communities, including Dorris. When complete, the ATP will emphasize the improvement of pedestrian and bicycle connections used to access schools, goods and services, and other important destinations for children, the elderly, and people with disabilities. Having an ATP allows communities to better identify and prioritize the specific active transportation improvements needed in their community and to better qualify for grant funding to implement the improvements.

Funding continues to be a significant challenge in implementing an active transportation network. Although the State supports investment in biking and walking by funding programs such as the Active Transportation Program and the Affordable Housing and Sustainable Communities Programs, many communities are interested in implementing active transportation projects and there is strong competition for these funds. Therefore, as part of the City's efforts to develop a connected active transportation system for Dorris, as well as better compete for funding assistance, the City will continue to coordinate with SCLTC and other communities in the region on development of the ATP and to plan for a regional active transportation network. Once the ATP is complete, the City of Dorris and other communities in Siskiyou County can better target grant opportunities to improve their active transportation networks.

4.3.2.6 Parking

The provision for parking is an integral part of a transportation system. Whether at home or at some destination point, sufficient space must be provided to park vehicles. Typically, this is done through the application of standards in a city's zoning ordinance, which require specific amounts of off-street parking based on the type and intensity of use. The City's zoning ordinance has a chapter dedicated to off-street parking and loading requirements.

Though the provision of off-street parking is required throughout much of the City, most streets in Dorris are of sufficient width to provide some on-street parking as well. This helps to offset situations where off-street parking has not been provided in the past, as well as giving neighborhoods more available parking for guests. Though less commonly needed, on-street parking areas also provide space for snow storage following winter storms.

To address the parking needs for passenger vehicles in the downtown area, the City permits parallel parking along both sides of US 97 and along nearby city streets. In addition, the City provides one public parking area along W 3rd Street and two public parking areas directly across US 97 from one another. One of the lots on US 97 is located adjacent to and provides parking for City Hall. With no public or private parking lots established for tractor-semis, trucks park along US

97 and at businesses (e.g., restaurants) that can accommodate them. Outside of the downtown, off-street parking is provided at Westside Park.

4.3.2.7 Traffic Management

Most streets in Dorris do not experience significant traffic and few traffic calming measures have traditionally been required. The lack of significant traffic on city roadways is an important element of the overall livability and small-town feel of Dorris. And while substantial population growth and a corresponding increase in traffic on local roads are not anticipated for the planning period, US 97 does periodically experience heavy traffic and several local roads intersect with the highway. As discussed in Section 4.3.2.1 above, vehicle speeds along US 97 are typically slow through the City, which allows motorists sufficient opportunity to safely maneuver to and from the highway. Depending upon season and time of day, pedestrian crossings can be more challenging, particularly for individuals with limited mobility. Additionally, the downhill curve coming off Dorris Hill likely requires further evaluation by Caltrans to determine whether additional traffic calming measures are required to better cue drivers to the need to slow as they approach city limits.

There are a variety of traffic calming measures that can achieve speed reductions, deter congestion, and reduce demand for vehicle trips. Some traffic calming measures alter the configuration of a roadway while others change how people psychologically perceive and respond to a street. Traffic calming measures can include center medians, pinchpoints, lane shifts, bulb outs, and roundabouts. Depending on site-specific conditions, speed reduction mechanisms can improve safety and result in fewer or less serious injuries when accidents occur.

Although no new traffic calming measures are currently scheduled, the City has been in discussions with Caltrans about utilizing the State's planned reconstruction of US 97 through Dorris to develop median separators on each side of the at-grade crossing on US 97, which coupled with additional signs along US 97 is expected to slow traffic, improve safety, and allow the City to establish a "quiet zone" with California Public Utilities Commission (CPUC) and Federal Railroad Administration (FRA) approval. The creation of a quiet zone is discussed further in the Noise Element. Additionally, the City continues to evaluate its roadways and intersections for safety, and to coordinate with Caltrans relative to US 97 and its intersection with city streets. As such, new measures may be determined necessary in the future.

4.3.3 Shipping and Transit

4.3.3.1 Railroad

Beginning in the early 1900s, the development of Dorris, both historically and physically, has been shaped by the development of the railroad. Many of the original buildings in Dorris were brought over from the community of Picard four miles away to take advantage of the arrival and alignment of the Southern Pacific Railroad through the Butte Valley in 1907. The railroad was also the primary means of transportation and the focal point of commercial activity in the community during Dorris' formative years. However, as mobility increased and as trucking grew to become the predominant method of shipping goods after 1960, railroad operations slowed in response.

According to the Federal Railroad Administration, the most recent count of train traffic occurred in 2020. At that time, 11 trains on average passed through Dorris each day on the Union Pacific Railroad-owned line. In 2024, community members estimate that train traffic has fallen to 3-4 trains per day on average. Trains no longer stop in the City, and the side rails are inactive and used for storage only. Though Amtrak passenger trains pass through Dorris each day, there is no rail passenger service. To access Amtrak and passenger rail service to other parts of the Country, residents must travel approximately 20 miles to the nearest Amtrak station in Klamath Falls.

4.3.3.2 Trucking

Freight movement to and from the Butte Valley is provided by inter- and intrastate firms, however, there are no local terminal facilities in Dorris. Being located on US 97, which is a major north-south truck route in California, Oregon, and Washington, several hundred trucks pass through Dorris daily. To direct heavy truck traffic to areas designed for commercial and industrial uses and away from residential areas and other sensitive land uses, the City has established a system of designated truck routes and penalties for noncompliance. This system also allows the City to ensure its roadways are structurally designed to accommodate the loads placed on them without excessive maintenance and cost.

4.3.3.3 Public Transit

As California strives to reduce VMT and GHG emissions, transportation strategies that include alternatives to driving single-occupancy vehicles have become increasingly important for cities and counties to develop and implement. And while Dorris and Siskiyou County are sufficiently rural that single-occupancy vehicles are likely considered a necessity by most residents, the availability of quality transit service facilitates access to goods, services, and employment opportunities for all residents, encourages ridership, and helps to meet State goals. Further, by coordinating transit routes and stops with bicycle and pedestrian infrastructure (e.g., bicycle parking and sidewalks), cities can promote ridership for a wider range of residents.

At present, there is no public transit in Dorris. The County of Siskiyou operates Siskiyou County's local bus service, Siskiyou Transit and General Express (STAGE). Based in Yreka, STAGE principally serves central and southern Siskiyou County and does not extend out to Dorris. In addition, the Basin Transit Service Transportation District (BTS) provides bus service in nearby Klamath Falls but the service does not extend into California. Should STAGE's bus service eventually be extended to Dorris, it is unlikely that it would be heavily utilized for daily bus service to Yreka approximately 67 miles away when Klamath Falls and its larger availability of goods, services, and employment opportunities is much closer. Nevertheless, there are very few state or county services available in Dorris, and with no such services available for California residents in Oregon, Dorris residents must periodically travel to Yreka. For this reason, it is anticipated that a weekly or semi-weekly bus service to Yreka would benefit the community.

Greyhound Lines, Inc. (Greyhound) operates the largest, private intercity bus service in North America with daily buses passing through Dorris; however, unless requested, these buses pass through the City without making stops. Residents typically must travel to Klamath Falls to access the nearest Greyhound station and bus service to other parts of the Country.

To address the lack of public transit, the City allows residents with a license but without access to an automobile use of a city van for their appointments and errands. A driver is not included with the van. Perhaps because of this, the van does not receive a great deal of use. A local church previously assisted by providing rides to Klamath Falls, however, the service is unavailable at present. It was noted that because of the lack of transit, one of the large agricultural operators in the Butte Valley charters a bus each week for the company's employees to go to Klamath Falls.

4.3.3.4 Aviation

The nearest air facility is the Butte Valley Airport, a small air strip located approximately six miles southwest of Dorris. The airport, which is neither owned nor maintained by the City, serves general aviation aircraft and does not provide commercial flights or scheduled service to other destinations. The nearest airport with passenger service, the Medford-Rogue Valley International

Airport, is located approximately 83 miles to the northwest in Medford, Oregon. Passenger air service was previously available in Klamath Falls at the Crater Lake-Klamath Regional Airport, but the service was terminated 2017. It is unknown whether a commercial carrier will return to Klamath Falls. Since the end of passenger air service in Klamath Falls, the Oregon Department of Transportation has partnered with intercity bus service Oregon POINT to offer daily shuttle service from the Amtrak station in Klamath Falls to the Medford-Rogue Valley International Airport. Other airports commonly used by city residents include the Sacramento International Airport in Natomas, the Redding Regional Airport in Redding, and the Reno-Tahoe International Airport in Washoe County, Nevada.

4.3.4 Public Utilities

4.3.4.1 Water

The City of Dorris has historically obtained its water from two wells. Because water from one of the wells exceeds state drinking water standards for arsenic, the City has been reliant upon a single well for many years. The groundwater from the active well is treated prior to being conveyed via booster pump to two elevated tanks outside city limits that have a combined storage capacity of 2,000,000 gallons. Water is provided to all residential, commercial, institutional, and industrial customers, and for fire protection services.

The City has an ongoing program of upgrading its water distribution system as funding allows, and the City has been successful obtaining grants for this purpose. Recent grant funded water system improvements include an additional storage tank that doubled the City's water storage capacity; repair and replacement of leaking distribution lines; installation of residential and nonresidential water meters; improvements to the City's primary well; development of an additional groundwater well (recently completed but not yet tied into the distribution system); and water treatment plant upgrades. With these improvements, the City's water system has been made safer and more reliable, and as a result, there has so far not been a need to restrict water usage during summer months except to enforce statewide orders. Goals, policies, and programs for the conservation of water resources are provided in the Conservation Element.

4.3.4.2 Wastewater

The City provides for the collection, treatment and disposal of wastewater within the city limits. The City's sewer system consists of approximately six miles of collection pipelines, two lift stations, and nearly 0.75-mile of pressure main that deliver wastewater to the treatment plant at the southwestern edge of the City. The majority of the system was constructed in 1964, with the east side of the railroad tracks added to the system in 1988. In order to repair and replace aging infrastructure and improve efficiency in the wastewater treatment process, the City recently received grant funding to make improvements to the City's wastewater collection and treatment system. Scheduled improvements include replacement of sewer lines and installation of pipelining in existing pipes, replacement of the Seattle Street force main, conversion of the existing Seattle Steet lift station, and upgrades to the wastewater treatment plant. The City's current water distribution and wastewater conveyance systems are shown **Figure 4-2, Water and Wastewater Utilities**.

4.3.4.3 Storm Drainage

Due to limited annual precipitation, relatively level ground, permeable soil conditions, lack of surface waters, larger residential lots, and the cost of improvements, Dorris does not have a true storm drain system or curb and gutter throughout most of the City. The storm drain system that exists was primarily installed by Caltrans to serve US 97. Once installed, the

improvements through Dorris became the responsibility of the City to maintain. As such, the City's limited storm drainage system consists of French drains, drainage pipes, a few drop inlets, and two small detention basins. While this system has adequately served the City in the past, increased storm intensities resulting from climate change will likely require that the City and Caltrans eventually expand the system and its capacity to accommodate increased stormwater runoff.

4.3.4.4 Solid Waste

The City provides for the removal of the solid waste generated inside city limits. In addition, the City is a member agency of the Siskiyou County Integrated Solid Waste Management Regional Agency, which oversees solid waste collection and disposal throughout Siskiyou County. The nearest transfer station is the Tulelake Transfer Station located on County Road 95001, approximately 11 miles northeast of Dorris. Solid waste originating from within the City is transported to the Tulelake Transfer Station and subsequently disposed of at one of seven landfills under contract with the Siskiyou County Integrated Solid Waste Management Regional Agency to receive the waste. Most of the receiving facilities are located in Oregon.

According to the California Department of Resources Recycling and Recovery (CalRecycle), the average individual in Siskiyou County generated 4.7 pounds of garbage per day in 2019. Based on an estimated population of 860 in Dorris at the time of the 2020 U.S. Census, it is projected that city residents generate roughly 1.48 million pounds (737.7 tons) of garbage per year. In an effort to reduce the amount of organic material being generated inside city limits and deposited in landfills, the City adopted regulations for the recovery of edible food waste consistent with and in accordance with the State of California's Short-Lived Climate Pollutants Organic Waste Reduction Strategy (i.e., SB 1383).

4.3.4.5 Electrical Transmission

There are no electrical energy production facilities in Dorris. Pacific Power provides electrical service to the City and surrounding areas via a 69 kV electrical transmission line that enters and exits the City from the east and a substation located along E. First Street/US 97. At present, the power supplied is sufficient to meet the demands of the community. However, as temperatures continue to increase under climate change and prolonged heat becomes more common, it is anticipated that demand for cooling technologies will increase in the community, resulting in greater energy demand.

Aside from underground power to streetlights along Main Street/US 97, power lines are located above ground throughout the community and generally follow transportation corridors. Current Public Utility Commission regulations require that all new facilities for residential subdivisions and commercial developments be located underground.

4.3.4.6 Data & Communications

Cal-Ore Communications provides landline telephone and fixed broadband services in Dorris, with AT&T, T-Mobile, Verizon, and U.S. Cellular offering cellular telephone and data services. Broadband technologies available in Dorris include fiber optic, digital subscriber line (DSL), satellite, and mobile. As a result, high speed internet is generally available in the City; however, there are pockets within the City where downstream and upstream speeds are limited, and which are eligible for California Advanced Services Fund (CASF) infrastructure grants for service provider improvements. To qualify, an area must lack a facility-based broadband provider that serves households (or areas) at a minimum speed of at least 25 megabits per second (Mbps)

down and 3 Mpbs up. Projects funded by the CASF program deploy infrastructure capable of providing broadband access at speeds of a minimum of 100 Mbps down and 20 Mbps up. Downstream speed ranges in the City are shown in **Figure 4-3, Consumer Fixed Downstream Data Availability**.

4.4 LEVEL OF SERVICE AND VEHICLE MILES TRAVELED

Level of Service (LOS) is a standard established by the Institute of Transportation Engineers (ITE) to quantify the subjective measure of traffic efficiency and tolerance. Factors taken into consideration include the volume of traffic, street and intersection design, signal timing, and other variables. LOS is normally used to describe peak-hour conditions, specifically the morning or afternoon hour when traffic is the heaviest.

To prevent roads from reaching a level in which traffic moves with poor efficiency from point to point, cities have historically established guidelines at which a street or road is considered to have reached the highest service volumes that are tolerable within a community. Rated in grades from LOS A (best) to LOS F (worst), a roadway's levels of service is based on the amount of congestion and delay drivers experience.

For the purpose of guiding future development relative to the City's transportation network, the City of Dorris strives to maintain a LOS threshold of "C" or better for all city streets and intersections. LOS C provides for "acceptable delays" and ensures city streets remain safely below but efficiently close to capacity. The City balances this LOS target with considerations of vehicle activity, pedestrian safety, cost, and meeting the needs of all users of the City's transportation network. Accordingly, the City Council may approve requests for deviations from the LOS threshold in unusual or exceptional circumstances, and as it determines necessary and appropriate. Note that this threshold reflects community expectations for its roadways and is not appropriate for evaluation of impacts under the California Environmental Quality Act (CEQA), as discussed below.

With the passage of SB 743 (2013), the way transportation impacts are analyzed under CEQA changed. Once based on LOS, CEQA standards now require that transportation impacts be assessed primarily based on the effects on Vehicle Miles Traveled (VMT). Whereas LOS is a metric for traffic congestion and delay, VMT is a measure of vehicle activity that accounts for the number and length of vehicle trips within an area over a given period. VMT is commonly applied on a per-household or per-capita basis and is a primary input for regional air quality analyses and for developing VMT rates for safety analysis.

Rates of VMT are typically lowest in compact, walkable, and mixed-use areas. Higher rates of VMT tend to occur in suburban or rural areas with low population densities and longer distances to activity centers. For these reasons, efforts to reduce VMT often focus on encouraging infill development. Similarly, SB 743 aims to encourage infill development and a diversity of land uses instead of sprawl, and to promote multi-modal transportation networks that provide efficient access to destinations and improve public health through active transportation.

While LOS is no longer relevant for CEQA purposes, LOS-based performance goals remain relevant for non-CEQA planning purposes and as a tool for the City to ensure its roadway system meets the expectations of the community. Further, policies in the Circulation and Land Use elements serve to reconcile competing interests of LOS and VMT and to meet the needs of all users of the transportation network, including pedestrians and bicyclists.

4.5 CORRELATION WITH LAND USE ELEMENT

The policies and programs in the Land Use Element directly tie to those highlighted in this Circulation Element. Creating connected, accessible, and complete systems of circulation networks and ensuring access to opportunities within a community and region requires coordination between land use and circulation planning.

As emphasized in the Land Use Element, mixed-use neighborhoods, revitalization of the town center, and infill development reduce the transportation needs of residents and businesses alike. Pedestrian and bicycle routes should connect the City's parks and schools with residential areas identified in the Land Use Element. Moreover, truck routes should continue to be directed away from sensitive areas and instead serve areas designed for heavier commercial and industrial uses in the Land Use Element.

4.6 CORRELATION WITH OPEN SPACE & CONSERVATION ELEMENT

As described in the Open Space & Conservation Element, the "Urban Heat Island Effect" can occur in small or large cities, and even in suburban areas. Heat islands form as natural land cover is replaced with dark-colored rooftops, pavement for roads and parking lots, and other hardscapes that collect and retain heat. According to the U.S. Environmental Protection Agency, these dark surfaces can reach temperatures up to 60 degrees Fahrenheit (°F) warmer than the air, thereby increasing the ambient temperatures in areas 1-7 °F higher than in natural landscapes during the day and 2-5 °F higher at night.

The use of trees in urban landscapes is an effective, low technology way to reduce the heat island effect, reduce energy consumption, improve air quality, reduce stormwater runoff, decrease soil erosion, improve the pedestrian environment, reduce glare, and improve community image and aesthetics. Studies have shown that urban trees offer returns far greater than their cost of planting and upkeep, and these benefits increase with the increased size and extent of the tree canopy. For these reasons, the City of Dorris promotes trees along pedestrian and bicycle paths, where appropriate, to enhance the urban canopy.

4.7 CORRELATION WITH SAFETY ELEMENT

Climate change is a critical consideration in the Circulation Element, as transportation is a significant source of greenhouse gases (GHG). The California Air Resources Board (CARB) reports that, as of 2021, about 38 percent of the state's GHG emissions come from the transportation sector, as compared to 29 percent nationally. To achieve GHG reduction goals, the City of Dorris is focusing on mixed-use development close to the town center, improving its active transportation network, and working with transit and para-transit providers to improve services to the community.

The recent increase in demand for work-from-home employment may assist in reaching GHG emissions targets by reducing the number of daily commuters in vehicles. However, adequate broadband coverage must be provided to facilitate remote work, and though there has been significant improvement in broadband coverage over the past 20 years, limitations and challenges persist.

One of the many anticipated consequences of climate change is increased storm intensities, which will require the City to reevaluate its existing drainage and limited stormwater infrastructure to ensure there is enough capacity to accommodate the increased volume of rainfall and runoff. Impacts on infrastructure associated with climate change and severe weather hazards are

discussed further in the Safety Element and detailed in the Siskiyou County Multijurisdictional Local Hazard Mitigation Plan, which the City has adopted as part of the General Plan by reference.

4.8 CIRCULATION ELEMENT GOALS, POLICIES & PROGRAMS

- GOAL C-1: A balanced transportation system that maximizes mobility and choice for city residents.
- GOAL C-2: A transportation system that is adequate, safe, and efficient for all users.
- GOAL C-3: A transportation system that contributes to the social, economic, and environmental well-being of the community.
- GOAL C-4: A pattern of development and a transportation system that minimize vehicle miles traveled (VMT).
- GOAL C-1: A balanced transportation system that maximizes mobility and choice for city residents.
- **POLICY C-1.1:** The City supports the development of a network of complete streets that reflects the local context and which provides for the mobility of all users, regardless of age or ability.
- **POLICY C-1.2:** The City supports the development and expansion of local and regional public transit systems.
- **POLICY C-1.3:** The City supports transit services, agencies, and organizations that provide paratransit services to individuals with special needs.
- **POLICY C-1.4:** The City supports partnerships, including with the Siskiyou County Local Transportation Commission (SCLTC), California Department of Transportation (Caltrans), and other Siskiyou County communities, to fund active transportation improvements in the City and region.
 - **Program C-1A:** Ensure that land use and transportation planning balance the needs and safety of motorists, pedestrians, bicyclists, and transit users.
 - **Program C-1B:** Evaluate the feasibility of installing elements of complete street improvements when planning roadway improvements.
 - **Program C-1C:** Require new development to contribute its fair share to complete street improvements.
 - **Program C-1D:** Consider multi-modal access requirements when making investment decisions about parks, recreation areas, public parking, and other city facilities.
 - **Program C-1E:** Ensure that new subdivisions are designed to include features that facilitate walking and bicycling.

Program C-1F: Work with transit providers (e.g., STAGE, BTS, Greyhound) to extend and/or expand service to Dorris to better address the transportation needs of the community.

Program C-1G: Work with transit providers, social service agencies (e.g., PSA 2 Area Agency on Aging), and community organizations (e.g., religious institutions and nonprofits) to offer paratransit services to those with special needs, including on demand rides for the elderly and disabled.

Program C-1H: Continue to coordinate with SCLTC and other communities in the region on development of the Active Transportation Plan and utilize the Active Transportation Plan to better target grant opportunities to improve the City's active transportation network.

Program C-1I: Partner with the SCLTC, Caltrans, and others to fund active transportation improvements in Dorris and the region.

GOAL C-2: A transportation system that is adequate, safe, and efficient for all users.

POLICY C-2.1: The City endeavors to provide adequate, safe, and efficient access to and from all land uses identified in the Land Use Element.

POLICY C-2.2: The City strives to maintain Level of Service (LOS) C or better on city streets and intersections.

POLICY C-2.3: The City supports deviations from the LOS standard when LOS C is unsafe for non-automobile users, is too expensive for the City to maintain, and/or results in increased VMT.

POLICY C-2.4: The City supports long-range plans for improvement of US 97 through Dorris by Caltrans to maintain safety and efficiency of traffic.

POLICY C-2.5: The City requires that new development provide adequate off-street parking to accommodate parking demands generated by the use.

POLICY C-2.6: The City requires that publicly accessible parking areas be designed to provide safe access for pedestrians and bicyclists.

POLICY C-2.7: The City supports the use of shared parking facilities that provide safe and convenient connectivity between adjacent uses.

Program C-2A: Review existing roadways and sidewalks to ensure that they meet general safety standards and are ADA compliant. If it is found that any routes are unsafe or noncompliant, make the necessary improvements to ensure that the routes are improved to appropriate standards.

Program C-2B: Continue to evaluate, improve, and maintain city streets and sidewalks to ensure safe efficient operation.

Program C-2C: Design public rights-of-way, intersections, and parking areas to include accessible, safe access for all users.

- **Program C-2D:** Adopt and apply street standards that reflect adjacent land uses and anticipated traffic volumes and provide flexibility where necessary to maintain public safety and neighborhood character.
- **Program C-2E:** Strive to maintain adequate on-street and off-street parking areas, including electric vehicle charging stations, to meet ongoing parking demands.
- **Program C-2F:** Evaluate the use of in lieu fees to offset the parking impacts of new or expanded commercial, institutional, or industrial land uses as an alternative to requiring that such uses provide the minimum off-street parking spaces required by Code.
- **Program C-2G:** Periodically evaluate parking standards in the Zoning Code for adequacy and consistency with state law and amend as necessary.
- **Program C-2H:** Actively participate in regional transportation planning programs, including programs coordinated by the SCLTC, and use the regional planning process to improve the City's transportation network.
- **Program C-2I:** Coordinate with Caltrans regarding safety issues on US 97 and the highway's intersections with city streets to ensure sufficient improvements are in place, including traffic calming measures, to safeguard the community.
- **Program C-2J:** When a project is proposed that has the potential to impact US 97 or the intersection of a city street with the highway, coordinate with Caltrans to address and resolve traffic-related issues.
- **Program C-2K:** Minimize the effects of truck traffic on city streets by continuing to maintain and enforce a system of designated truck routes, and ensure designated truck routes are designed to accommodate the heavier loads placed on them.
- **Program C-2L:** Support efforts to promote safety at rail crossings in the City.
- GOAL C-3: A transportation system that contributes to the social, economic, and environmental well-being of the community.
- **POLICY C-3.1:** The City supports the enhancement of the visual appearance of pedestrian and vehicular routes.
- **POLICY C-3.2:** The City recognizes the relationship of local transportation decisions to broader regional issues, such as congestion management and environmental sustainability.
- **POLICY C-3.3:** The City promotes access to public transit, non-vehicular modes of transportation, and greater linkages between land uses and transit to reduce automobile-related emissions.
- **POLICY C-3.4:** The City supports equitable deployment of comprehensive utility infrastructure in the City, including the efficient expansion of broadband infrastructure and the provision of cost-effective high-speed internet service to promote economic prosperity.
- **POLICY C-3.5**: The City requires that development mitigate adverse impacts of a proposed project on the existing transportation system.

POLICY C-3.6: The City endeavors to provide public services, facilities, and utilities that are efficient, cost effective, and in compliance with state and federal regulations.

Program C-3A: Construct, improve, and maintain the system of curb, gutters, sidewalks, and crosswalks for circulation, safety, and drainage control, giving priority to high traffic areas.

Program C-3B: Evaluate the planting of low maintenance shade trees in landscaped areas adjacent to streets where non-motorized travel is expected, where such improvements can be made without jeopardizing emergency response and future capacity requirements, and where such improvements are feasible and appropriate.

Program C-3C: As part of the CEQA process, require traffic studies for projects that have the potential to generate substantial increases in VMT or impact traffic patterns.

Program C-3D: Protect natural features and sensitive areas to the maximum extent feasible when maintaining and expanding the City's circulation system.

Program C-3E: Develop a targeted approach to digital inclusion that includes expansion of public Wi-Fi in the downtown area, city hall, and other key areas of community interest.

Program C-3F: When possible, reduce barriers to the equitable deployment of new broadband and telecommunication technologies and infrastructure to attract employers and businesses.

Program C-3G: Work with state agencies and regional partnerships to develop funding for improvements to the City's water, wastewater, and storm drain systems.

GOAL C-4: A pattern of development and a transportation system that minimize vehicle miles traveled (VMT).

POLICY C-4.1: The City supports the implementation of strategies to reduce the number and length of vehicle trips, including active transportation improvements, mixed-use development, greater access to public transit, and the placement of development in proximity to employment and activity centers.

POLICY C-4.2: The City promotes new development that will reduce household and employment VMT relative to existing conditions.

POLICY C-4.3: The City supports on- and off-street improvements that provide functional alternatives to automobile usage, promote active transportation, and reduce VMT.

Program C-4A: Ensure that Dorris' transportation system complements the land use pattern, and that land use decisions complement and make efficient use of the transportation system.

Program C-4B: Continue to develop a pedestrian and bicycle transportation network, using on- and off-street improvements as appropriate, to increase nonvehicular access to local destinations.

Program C-4C: When planning for the extension of public transit, develop and support strategies that strengthen first/last mile connectivity to enhance the viability and utility of the service for all users, such as wayfinding signs, sidewalks, and bicycle parking.

Program C-4D: Coordinate with Caltrans on development of a carpooling lot to facilitate and support regional commuting.

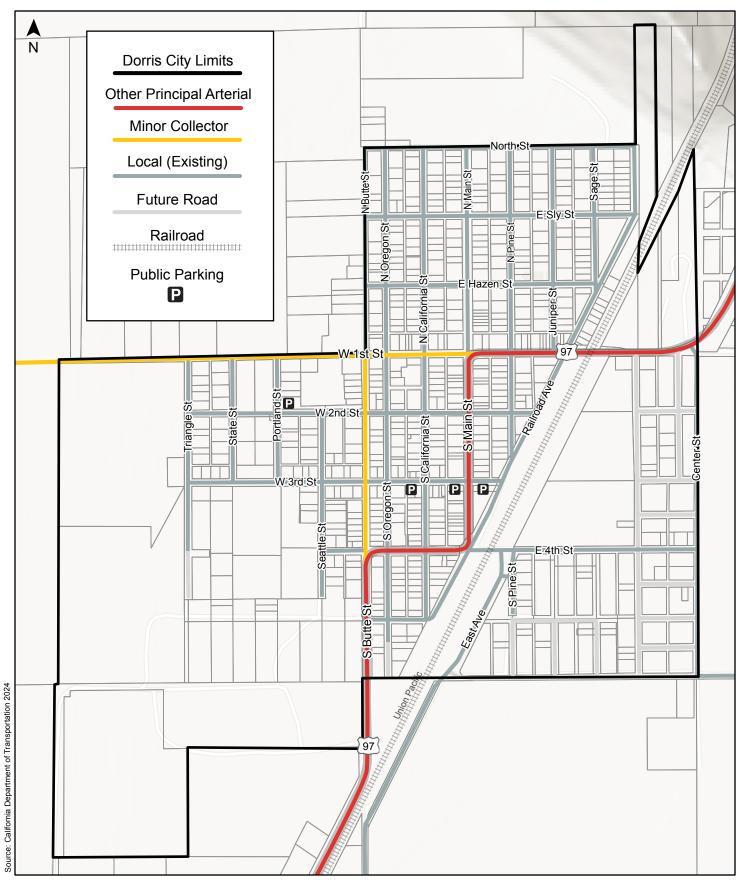


Figure 4-1, Circulation Map

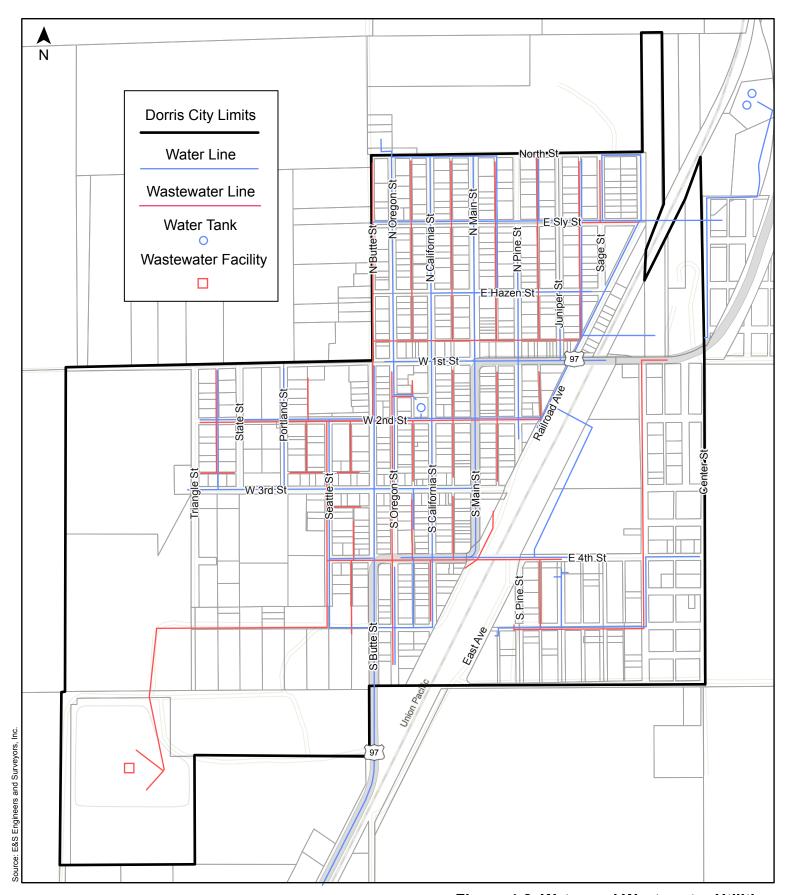


Figure 4-2, Water and Wastewater Utilities

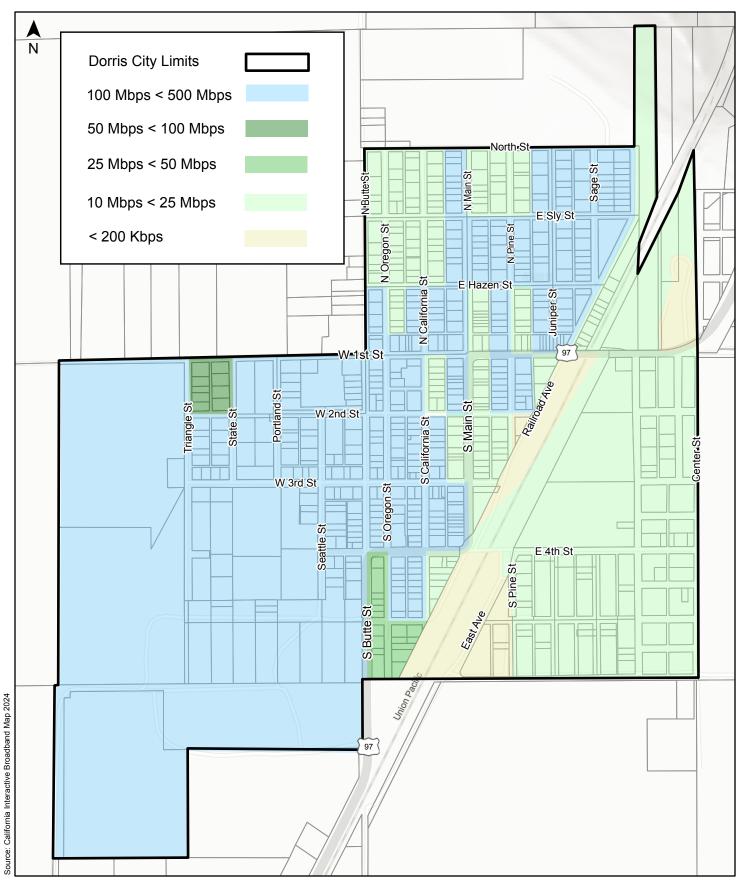


Figure 4-3, Consumer Fixed Downstream Availability